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1 Summary of File Options and Applications

Table 1 shows a summary of file options and applications of microarray technologies by

three of the manufacturers currently on the market. The table also shows one example

of the products designed for each application.
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2 Examples on the Usage of the oligo Package

This section presents some applications of the oligo package on the analysis of microarray

data. Section 2.1 shows how to use it to preprocess gene expression data. Section 2.2

demonstrates the use of the CRLMM algorithm for genotyping, discussed in detail by Car-

valho et al. (2007). Section 2.3 demonstrates its use to preprocess exon arrays. Section 2.4

shows how oligo can interface with other BioConductor packages, in this particular case,

we use the ACME package to find enriched regions on a ChIP-chip dataset available on

NimbleGen tiling arrays.

2.1 Preprocessing Expression Arrays

The dataset used in this example corresponds to the Latin Square Data for Expression Al-

gorithm Assessment on the Human Genome U95 platform, made available by Affymetrix

on their website1. To be used with oligo, requires the availability of the pd.hg.u95av2

annotation package, built with the pdInfoBuilder package.

After the annotation package is installed, the next step is to load oligo and identify

the files to be used in the analysis. The list.celfiles function can be used to ap-

propriately list Affymetrix CEL files. Similarly, the list.xysfiles can be used with

NimbleGen XYS files. Both functions are built on top of list.files, therefore taking

the same arguments as the latter, allowing more advanced use when necessary. Below,

the celFiles contains the all the CEL file names, with full path, in the expressionData

directory.
R> library(oligo)

R> celFiles <- list.celfiles("expressionData", full.names = TRUE)

Importing the CEL files is achieved with the read.celfiles function. An analogous

function, read.xysfiles, is available for NimbleGen data, which is delivered via XYS

files. Both functions will, in general, correctly identify the annotation package to be

used with the experimental data being imported, but the user can specify the pkgname

argument to force the use of a particular one, if for some reason this is required.
R> expData <- read.celfiles(celFiles, pkgname = "pd.hg.u95a")

1http://www.affymetrix.com/support/technical/sample_data/datasets.affx
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The object expData belongs to the ExpressionFeatureSet class, as it corresponds to

expression data. The object, like all FeatureSet-like objects, represents features in the

rows and samples in the columns and can be easily subsetted, using the standard [ op-

erator. All the manipulation structure is inherited through te tight integration between

oligo and Biobase, whose documentation we recommend to the interested reader.
R> class(expData)

[1] "ExpressionFeatureSet"

attr(,"package")

[1] "oligoClasses"

Figure 1 demonstrates how the image method can be used to generate pseudo-images

of the samples. In this particular plot, we use the first sample as an example.
R> image(expData[, 1], col = gray((64:0)/64))

Figure 1: Pseudo-image, used for visual assessment of the array, for sample
1521a99hpp_av06.CEL.

The user can evaluate the distribution of the observed data by using the hist method,

which will produce smoothed histograms for each sample available in the dataset. Be-

fore plotting, the method transforms the data using the function passed to the transfo

argument, whose default is log2, explaining why the plot is shown on the log2 scale.
R> hist(expData, col = colorFunction(59), lty = 1, xlim = c(6, 12))

Another approach to assess the data distribution is to use the boxplot method. On the

example below, we use only the first 10 samples in the dataset to simplify the visualization.

On FeatureSet objects, the method will automatically transform the data to the log2 scale,

4
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Figure 2: Smoothed histograms for samples in the dataset.

but this is easily modified through the transfo argument, which takes a function as a valid

value.
R> boxplot(expData[, 1:10], col = colorFunction(10), names = 1:10)

1 2 3 4 5 6 7 8 9 10

6
8

10
12

14

Figure 3: Boxplot showing the distribution of the observed log2-intensities on the sample
dataset. The boxplot method implemented in oligo follows the standards of the original
method used by R.

Plotting log-ratio versus average intensity can often reveal intensity effects on log-

ratios, as shown by the MA plot on Figure 4. The argument arrays can be specified to

determine which samples will be plotted and the lowessPlot is a logical flag to indicate

that the user wants a lowess curve to be overlapped to the data points.
R> MAplot(expData, arrays = 1, lowessPlot = TRUE, ylim = c(-1, 1))

5



Figure 4: The MA plot can be used to assess the dependence of log-ratios on average
log-intensities.

The annotation packages used by oligo store feature sequences. This is done through

instances of DNAStringSet objects implemented in the Biostrings package. The sequences

for PM probes can be easily accessed via the pmSequence function, as shown below.
R> pmSeq <- pmSequence(expData)

R> pmSeq[1:5]

A DNAStringSet instance of length 5

width seq

[1] 25 GCTGCCCACAGTGACCGACCAGGAG

[2] 25 GCAGCCACCAGTGGACCTAGCCTGG

[3] 25 CAGCCACCAGTGGACCTAGCCTGGA

[4] 25 CGCATCCACGTGAACTTGAGCACTG

[5] 25 GGCTTCACAGTCACTCGGCTCAGTG

When importing the data, oligo does not impose any transformation, so one needs to

manually apply, for example, the log2 transform to the intensities of PM probes, which

can be accessed with the pm function, as needed. Below, we present how to centralize the

log2-PM intensities for each sample in expData.
R> pmsLog2 <- log2(pm(expData))

The dependence of intensity on probe sequence is a well established fact on the mi-

croarray literature. The use of the oligo package simplifies significantly the observation

of this event, as it provides simple access to both observed intensities and annotation.

Below, we estimate the affinity splines coefficients (Wu et al., 2004).
R> coefs <- getAffinitySplineCoefficients(pmsLog2, pmSeq)

6



On Figure 5, we show how the results above can be used to estimate the base-position

effects on the log2-intensities observed for the first sample in the dataset. The getBase-

Profile function provides a simple way of using the affinity coefficients to estimate the

effects of interest. It accepts a plot argument, which takes logical values, to make the

plot and returns, invisibly, the estimated effects. All the arguments that can be passed

to the matplot function can also be passed to getBaseProfile.
R> colors <- colorFunction(4)

R> xL <- "Base Position"

R> yL <- "Effect"

R> pchs <- c("A", "C", "G", "T")

R> getBaseProfile(coefs[, 1], plot = TRUE, pch = pchs, type = "b",

xlab = xL, ylab = yL, lwd = 3, col = colors, ylim = c(-0.4, 0.4))
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Figure 5: Sequence effect for the first sample in the dataset. These results have been
reported in detail elsewhere, but can be easily reproduced with the use of the oligo
package.

Tools implemented in other packages can be used in conjunction with oligo to in-

vestigate different hypothesis. The example below shows how the alphabetFrequency

function, defined by the Biostrings can be used to determine the GC content of the probe

sequences accessed by oligo.
R> counts <- Biostrings::alphabetFrequency(pmSeq, baseOnly = TRUE)

R> GCcontent <- ordered(counts[, "G"] + counts[, "C"])

In addition to Figure 5, we can also plot the log2-intensities as a function of the GC

content computed above. Figure 6 presents the strong dependency of log2-intensities on

GC contents for sample 1, which is also present in all other samples.

7



R> colors <- colorFunction(nlevels(GCcontent), pal = "Blues")

R> xL <- "GC Frequency in 25-mers"

R> yL <- expression(log[2] ~ intensity)

R> boxplot(pmsLog2[, 1] ~ GCcontent, xlab = xL, ylab = yL,

range = 0, col = colors)
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Figure 6: On this boxplot stratified by GC content, we can observe the strong dependency
of log2-intensities on the number of G or C bases observed in the probe sequency.

To preprocess expression data, oligo implements the RMA algorithm (Irizarry et al.,

2003a,b). The rma method, as shown below, proceeds with background subtraction,

normalization and summarization using median polish.
R> ppData <- rma(expData)

The results are returned in an ExpressionSet instance and used in downstream anal-

yses, as currently done by several strategies for microarray data analysis and described

elsewhere.
R> class(ppData)

[1] "ExpressionSet"

attr(,"package")

[1] "Biobase"

At this point, the user can proceed with, for example, differential expression analyses.

The methodologies involved in this step make use of several other packages, like limma

and genefilter. When preprocessing the data, oligo stores the summaries in a matrix called

exprs, present in the assayData data slot of the ExpressionSet object. Therefore, the

only restriction the additional strategies used with the preprocessed data have is to be

aware that the processed data can be easily accessed with the exprs method.

8



2.2 Obtaining Genotype Calls from SNP Arrays

The oligo package can genotype, using the CRLMM algorithm, several Affymetrix SNP

arrays. To do so, the user will need, in addition to the oligo package, an annotation

data package specific to the designed used in the experiment. Although these annotation

packages are created using the pdInfoBuilder package, the CRLMM algorithm requires

additional hand-curated data, which are included in the packages made available through

the BioConductor website. The main document describes the supported designs and the

respective annotation packages.

As an example, we will use the 269 CEL files, on the XBA array, available on the

HapMap website2, which were downloaded and saved, uncompressed, to a subdirectory

called snpData. Therefore, we need to instruct the software to look for the files at the

correct location. An output directory should also be defined and that is the place where

the summary files, including genotype calls and confidences are stored. This output

directory, which we chose to call crlmmResults, must not exist prior to the CRLMM

call, the software will take care of this task.
R> library("oligo")

R> fullFilenames <- list.celfiles("snpData", full.names = TRUE)

R> outputDir <- file.path(getwd(), "crlmmResults")

Given the always increasing density of the SNP arrays, we developed efficient methods

to process these chips, reducing the required amount of memory even for large studies.

Using this approach, we process batches of SNPs at a time, saving partial results to disk.

We refer the interested reader to Carvalho et al. (2007) for detailed information on the

CRLMM algorithm. The genotyping strategy, in summary, has three steps: A) quantile

normalizes against a known reference distribution; B) summarizes the data to the SNP-

allele level using median polish; C) uses estimated parameters to classify the samples in

genotype groups using Mahalanobis distance.

The summaries are average intensities and log-ratios, defined as across allele and

2http://www.hapmap.org
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within strand, ie:

As =
θA,s + θB,s

2
(1)

Ms = θA,s − θB,s, (2)

where s defines the strand (antisense or sense). On the genomewide designs, SNP 5.0 and

6.0, the strand information is dropped. These summaries can be obtained via getA and

getM methods, which return arrays with dimensions corresponding to SNPs, samples and

strands (if applicable), respectively. These measures are later used for genotyping.

CRLMM involves running an EM algorithm to adjust for average intensity and frag-

ment length in the log-ratio scale. These adjustments may take long time to run, depend-

ing on the combination of number of samples and computer resources available. Below,

we show the simplest way to call CRLMM, which requires only the file names and output

directory.
R> crlmm(fullFilenames, outputDir)

The crlmm method does not return an object to the R session. Instead, it saves the

objects to disk, as not all systems are guaranteed to meet the memory requirements that

SnpCallSetPlus (for 100K and 500K arrays) or SnpCnvCallSetPlus (for SNP 5.0 and SNP

6.0 arrays) objects might need. For the user’s convenience, the getCrlmmSummaries will

read the information from disk and make a SnpCallSetPlus or SnpCnvCallSetPlus object

available to the user.

R> crlmmOut <- getCrlmmSummaries(outputDir)

R> calls(crlmmOut[1:5, 1:2])

NA06985.CEL NA06991.CEL

SNP_A-1507972 3 3

SNP_A-1510136 3 3

SNP_A-1511055 3 3

SNP_A-1518245 2 3

SNP_A-1641749 3 3

R> callsConfidence(crlmmOut[1:5, 1:2])

NA06985.CEL NA06991.CEL

SNP_A-1507972 0.9999254 0.9999057

SNP_A-1510136 0.9998046 0.9998741

SNP_A-1511055 0.9999254 0.9999254

10



SNP_A-1518245 0.9995028 0.9999254

SNP_A-1641749 0.9989217 0.9975608

The genotype calls are represented by 1 (AA), 2 (AB) and 3 (BB). The confidence is

the predicted probability that the algorithm made the right call.

Summaries generated by the algorithm can also be accessed from the R session.

The options for summaries are ”alleleA”, ”alleleB”, ”alleleA-sense”, ”alleleA-antisense”,

”alleleB-sense”, ”alleleB-antisense”. The options ”alleleA” and ”alleleB” are only avail-

able for SNP 5.0 and SNP 6.0 platforms. The other options are to be used with 50K and

250K arrays.

Below, we choose two SNPs to show the different configurations of the genotype

groups.
R> snps <- paste("SNP_A-", c(1703121, 1725330), sep = "")

R> LIM <- c(-4, 4)

Figure 7(a) represents a SNP for which genotyping is simplified by the good discrim-

ination of both strands. Figure 7(b) shows a SNP for which features on the antisense

strand have very good discrimination power, while no information (for classification) can

be extracted from the sense strand.

R> gtypes <- as.integer(calls(crlmmOut[snps[1], ]))

R> plotM(crlmmOut, snps[1], ylim = LIM, xlim = LIM, col = gtypes)

R> gtypes <- as.integer(calls(crlmmOut[snps[2], ]))

R> plotM(crlmmOut, snps[2], ylim = LIM, xlim = LIM, col = gtypes)

CRLMM was shown to outperform competing genotyping tools. We refer the reader to

Lin et al. (2008) for further details on this subject. The genotypes provided by CRLMM,

and in this example stored in crlmmOut, can be easily used with other BioConductor

tools, like the snpMatrix package, for downstream analyses.

2.3 Preprocessing Exon Arrays

On this section, we use colon cancer sample data for exon arrays, available on the

Affymetrix website3, to demonstrate the use of the oligo package to import and preprocess

these data. The CEL files were downloaded to the exonData directory and, after loading

3http://www.affymetrix.com/support/technical/sample_data/exon_array_data.affx

11

http://www.affymetrix.com/support/technical/sample_data/exon_array_data.affx


●

●

●

●
●

●

●

●

●
●

● ●

● ●

●

●

●
●

●

●

●
●

●

●

●
●

● ●

●

●

●

●

●●● ●

●●

●●●

●

●

●●

●
●

●
●

●

●

●

●

●●

●

●

●
●

●

● ●

●

●●

●

●

●

●

●

●●
●
●
●

●
●
●

●

●●

●

●

●

●

●

●
●

●

●

●
● ●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●●

●

●●

●

●

●
●

●

●

●

●

●
●●

●●
●

●

●

●
●

●●

●

●

●
●

●

●

●

●
●

●
●

●

●

● ●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●●● ●

●

●

●

●

●

●●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●
●

●

●
●

●●
●

●

● ●

●●
●

●
●

●

● ●

●

●

●
●

●

●

●

●

●
●

●

●

●
●

●

●●
●

●

●
●

●

●

●

●

●

●

−4 −2 0 2 4

−
4

−
2

0
2

4

antisense

se
ns

e

(a) SNP A-1703121 has very good discrimina-
tion on both strands and, as competing algo-
rithms, CRLMM has excelent performance on
scenarios like this. On this plot, genotype calls
provided by oligo are represented in different col-
ors (black: AA; red: AB; green: BB)

● ●●

●
●

●

●●
●●

●●

● ●
●

●

●●

●

●●

●
●

●
●

● ●

●

●

●

●

●
●

●

●
●

● ●
●

●

●
●●

●

●

●

●
●

●
●

●
●

●

●● ●

●

●

●

●

●●

●

●

●

●
●

● ●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

● ●●●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●●
●

●

●

●

●

●
●

●

●

●

●

●
●

●
●

●

●

● ●
●

●

●

●
●

●
●

●

●

●

●
●

●

●

●

●●
●

●

●

●●

●

●

●

●●
●

●
●

●

●
●

●●

●

●●
●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

● ●

●

●
●
●

●

●

●

●
●●

●

●

●
●

●

●

●

●

●●

●
●

●

●
●

●

●

●

●
●

●

● ●

●

●

●

●

● ●

●

●
●●●

●

●

●

●
●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●
●

●

●

●●

−4 −2 0 2 4

−
4

−
2

0
2

4

antisense

se
ns

e

(b) SNP A-1725330 presents poor discrimina-
tion on the sense strand. Because CRLMM does
not average across strands, it can perfectly pre-
dict the genotype cluster each sample belongs to.
On similar scenarios, competing algorithms are
known to fail. Color scheme follows Figure 7(a).

the package, we use the celFiles variable to store the full CEL file names (including

path), as shown below.
R> library(oligo)

R> celFiles <- list.celfiles("exonData", full.names = TRUE)

The read.celfiles function is used to import CEL files. Its simplest use is shown

below. In this example, the parser will read all CEL files present in the exonData directory

and store the results in the exonRawData variable.
R> exonRawData <- read.celfiles(celFiles)

As already noted, oligo implements different classes depending on the nature of the

data. Therefore, exonRawData is an ExonFeatureSet object. This is a especially interest-

ing feature, as it allows methods to behave differently depending on the object class.

Generally, RMA will background correct, quantile normalize and summarize to the

probeset level, as defined in the annotation packages. When working with an ExonFea-

tureSet object, processing to the probeset level provides expression summaries at the exon

level and can be obtained by setting the argument target to "probeset", as presented

below.
R> probesetSummaries <- rma(exonRawData, target = "probeset")
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For Exon arrays, Affymetrix provides additional annotation files that define meta-

probesets (MPSs), used to summarize the data to the gene level. These MPSs are clas-

sified in three groups – core, extended and full – depending on the level of confidence of

the sources used to generate such annotations. Additional values allowed for the target

argument are "core", "extended" and "full". The example below shows how gene level

summaries can be obtained through oligo.
R> geneSummaries <- rma(exonRawData, target = "core")

The results obtained from analyses performed with oligo can be easily combined with

features offered by other packages. As an example, we use the biomaRt package to ob-

tain IDs of probesets on the Human Exon array that map to Entrez Gene ID 10948

(ENSG00000131748).
R> library(biomaRt)

R> ensembl <- useMart("ensembl", dataset = "hsapiens_gene_ensembl")

R> theIDs <- getBM(attributes = "affy_huex_1_0_st_v2", filters = "entrezgene",

values = 10948, mart = ensembl)[[1]]

R> theIDs <- as.character(theIDs)

Combining this information with the annotation package associated to the data in

exonRawData, we can get detailed facts on the probesets found to map to Entrez Gene

ID 10948. Below, we obtain, respectively, the MPS IDs, probeset IDs, probe IDs and

start/stop positions for the probesets identified above.
R> library(AnnotationDbi)

R> conn <- db(exonRawData)

R> sql <- paste("SELECT meta_fsetid, pmfeature.fsetid, fid, start, stop",

"FROM featureSet, pmfeature, core_mps",

"WHERE pmfeature.fsetid = featureSet.fsetid",

"AND featureSet.fsetid = core_mps.fsetid",

"AND pmfeature.fsetid IN (",

toSQLStringSet(theIDs),

")")

R> probesetInfo <- dbGetQuery(conn, sql)

The availability of start and stop positions of the probesets improves the visualization

of the summaries at the exon level. If genomic coordinates were available for probes

themselves, visualization could be improved even more. To achieve this, we first obtain

the sequences for the probes identified above. We saw that the pmSequence method

provides the sequences for all PM probes identified on the chip but, instead, we directly

load the Biostrings object used to store the sequence information for these probes. This
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gives us access not only to the sequences, but also to the probe IDs linked to them.
R> library(Biostrings)

R> data(pmSequence, package = annotation(exonRawData))

Because probe IDs are available in the pmSequence object, we can easily restrict our

search to the probes listed in the probesetInfo object.
R> idx <- match(probesetInfo[["fid"]], pmSequence[["fid"]])

R> pmSequence <- pmSequence[idx, ]

The pmSequence object behaves like a data.frame, but it is comprised of complex data

structures defined in Biostrings. Below, we modify its representation to make it a regular

data.frame object.
R> pmSequence <- data.frame(fid = pmSequence[["fid"]],

sequence = as.character(pmSequence[["sequence"]]),

stringsAsFactors = FALSE)

By joining the probesetInfo and pmSequence objects, we centralize the available

probe annotation.
R> probeInfo <- merge(probesetInfo, pmSequence)

The genomic coordinates in probeInfo refer to the probesets. To better visualize the

observed probe intensities, we would be better off if the coordinates were relative to the

probes. Below, we use the BSgenome.Hsapiens.UCSC.hg18 to obtain up-to-date genomic

coordinates. The coordinates are found by aligning the probe sequences to the reference

genome made available through the package. Because Entrez Gene ID 10948 is located

on chromosome 17, the search is limited to this region.
R> library("BSgenome.Hsapiens.UCSC.hg18")

R> chr17 <- Hsapiens[["chr17"]]

R> seqs <- complement(DNAStringSet(probeInfo[["sequence"]]))

R> seqs <- PDict(seqs)

R> matches <- matchPDict(seqs, chr17)

After matching the sequences, we update the genomic coordinates.
R> probeInfo[["start"]] <- unlist(startIndex(matches))

R> probeInfo[["stop"]] <- unlist(endIndex(matches))

With the updated coordinates, we reorder the probe information object, probeInfo,

and extract the probe intensities in the same order. The probe ID field, fid in probeInfo,

provides direct access to the probes of interest. The exprs method is used to access the

intensity matrix of the exonRawData object and immediately subsetted to the probes of

interest. After subsetting the observed intensities, we log2-transform the data.
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R> probeInfo <- probeInfo[order(probeInfo[["start"]]), ]

R> probeData <- exprs(exonRawData)[probeInfo[["fid"]], ]

R> probeData <- log2(probeData)

We use the updated genomic to estimate the probeset coverage. This information will

be used when plotting the data and will provide approximate delimiters of the probesets.
R> attach(probeInfo)

R> probesetStart <- aggregate(start, list(fsetid = fsetid), min)

R> names(probesetStart) <- c("fsetid", "start")

R> probesetStop <- aggregate(stop, list(fsetid = fsetid), max)

R> names(probesetStop) <- c("fsetid", "stop")

R> detach(probeInfo)

The psInfo object will store the probeset information (probeset ID, start and stop

positions), as shown below. After ordering appropriately the data, the psInfo probeset

is attached, to simplify its usage during the R session.
R> psInfo <- merge(probesetStart, probesetStop)

R> psInfo <- psInfo[order(psInfo[["start"]]), ]

R> psInfo[["fsetid"]] <- as.character(psInfo[["fsetid"]])

R> attach(psInfo)

R> probesetData <- exprs(probesetSummaries[fsetid, ])

R> detach(psInfo)

To visualize the data processed by oligo, we will use the GenomeGraphs package. To

match the genome build used to update the probe coordinates, an archived version of the

database will be queried.
R> library(GenomeGraphs)

R> probeids <- as.character(probeInfo[["fsetid"]])

R> ensembl = useMart("ensembl_mart_51", dataset = "hsapiens_gene_ensembl",

archive = T)

R> geneid <- "ENSG00000131748"

R> title <- makeTitle(text = geneid, color = "darkred")

The raw data, in the log2 scale, will be represented by the raw object below, created

with the makeExonArray constructor.
R> attach(probeInfo)

R> raw <- makeExonArray(intensity = probeData, probeStart = start,

probeEnd = stop, probeId = probeids,

nProbes = rep(1, nrow(probeInfo)),

dp = DisplayPars(color = "blue", mapColor = "dodgerblue2"),

displayProbesets = FALSE)

R> detach(probeInfo)

The summarized data is also represented through an object created by makeExonAr-

ray . The structure is identical to the one used above.
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R> attach(psInfo)

R> exon <- makeExonArray(intensity = probesetData, probeStart = start,

probeEnd = stop, probeId = fsetid,

nProbes = rep(1, nrow(psInfo)),

dp = DisplayPars(color = "seagreen", mapColor = "seagreen"),

displayProbesets = FALSE)

To represent the probesets designed by Affymetrix, we use an AnnotationTrack object.
R> affyModel <- makeAnnotationTrack(start = start, end = stop,

feature = "gene_model", group = geneid,

dp = DisplayPars(gene_model = "darkgreen"))

R> detach(psInfo)

The gene and transcripts representations are build as follows. Affymetrix probes will

be represented in green, while the gene will be in orange; transcripts are represented in

blue.
R> gene <- makeGene(id = geneid, biomart = ensembl)

R> transcript <- makeTranscript(id = geneid, biomart = ensembl)

R> legend <- makeLegend(c("Affymetrix", "Gene"),

fill = c("darkgreen", "orange"))

Figure 7, generated with the gdPlot function, shows the representation of the log2-

intensities and summaries at the exon level. It also shows probesets, gene and transcripts

on the region of interest.
R> gdPlot(list(title, raw, exon, affyModel, gene, transcript,

legend), minBase = 35067500, maxBase = 35068900)
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Figure 7: Visual representation of observed log2-intensities and summarized data at the
exon level for gene ENSG00000131748. The probes, gene and transcript are also repre-
sented, respectively, in green, orange and blue.
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Below, we identify the meta-probeset ID associated to the probes used above. Once

that is known, we can extract the proper gene-level summaries stored in geneSummaries.
R> mps <- unique(probeInfo[["meta_fsetid"]])

R> mps <- as.character(mps)

R> mps

[1] "3720343"

Therefore, the standard accessors can be used to obtain the gene summaries for the

unit above. Figure 8 shows the expressions for gene ENSG00000131748 across the 33

samples available on this dataset.
R> gSummaries <- exprs(geneSummaries[mps, ])

R> x <- 1:length(gSummaries)

R> plot(x, gSummaries, xlab="Sample", ylab="Expression", main=geneid)
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Figure 8: Expression levels estimated through RMA at the gene level.

2.4 Interfacing with ACME to Find Enriched Regions Using

Tiling Arrays

On this Section, we demonstrate how oligo can be easily combined with tools that rely on

the structure implemented in the Biobase package. Using a sample ChIP-chip dataset4

provided by NimbleGen, we use the getNgsColorsInfo function to obtain the information

regarding channels and sample names for the XYS files saved in the tilingData directory.

4Available by request
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The getNgsColorsInfo parses the file names and, using the _532 and _635 strings in

the names, suggests channels and sample names for each XYS file available.
R> library(oligo)

R> info <- getNgsColorsInfo("tilingData", full = TRUE)

R> head(info)

color1 color2 sampleNames

1 tilingData/92204_532.xys tilingData/92204_635.xys 92204

2 tilingData/92207_532.xys tilingData/92207_635.xys 92207

3 tilingData/92369_532.xys tilingData/92369_635.xys 92369

4 tilingData/94187_532.xys tilingData/94187_635.xys 94187

Combining the results in info with read.xyfiles2, we read the XYS files using a

data structure that simplifies the data management across different channels.
R> rawTilingData <- read.xysfiles2(info[,2], info[,1], sampleNames=info[,3])

The user can access the channel specific data by calling the channel method. The

resulting object is an ExpressionSet object that the user can use as required.
R> c1 <- channel(rawTilingData, "channel1")

R> c2 <- channel(rawTilingData, "channel2")

Detailed information on the PM probes available on the array can be obtained by

directly querying the annotation package. The call below will extract the fid, fsetid,

chromosome and start position of each probe from the annotation package and order the

results by chromosome and start position.
R> sql <- paste("SELECT fid, fsetid, chrom as chromosome, position as start",

"FROM pmfeature INNER JOIN featureSet USING(fsetid)",

"ORDER BY chrom, position")

R> annotPM <- dbGetQuery(db(rawTilingData), sql)

Using the probe sequence, the end position of the probe can be easily obtained. We

load the sequences directly, so the fid field can be used to order the sequences appropri-

ately.
R> data(pmSequence, package = annotation(rawTilingData))

R> idx <- match(annotPM[["fid"]], pmSequence[["fid"]])

R> pmSequence <- pmSequence[idx, ]

To obtain the end position, we use width, defined in the Biostrings package.
R> attach(annotPM)

R> library(Biostrings)

R> annotPM[["end"]] <- start + width(pmSequence[["sequence"]]) - 1

R> head(annotPM)

fid fsetid chromosome start end

1 392369 5622 chr1 56753 56808

2 286872 5622 chr1 56853 56909
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3 229027 5622 chr1 56953 57007

4 386658 5622 chr1 57053 57114

5 85534 5622 chr1 57153 57202

6 170025 5622 chr1 57253 57307

The fid field corresponds to the row number in the rawTilingData object. When

applied to the raw data object, the getM function returns a matrix with the log2-ratio of

the intensities. Below, we get the log2-ratios corresponding to the PM probes described

in the annotPM object.
R> ratioPM <- getM(rawTilingData)[fid, ]

R> dimnames(ratioPM) <- NULL

R> detach(annotPM)

R> class(ratioPM)

[1] "matrix"

By converting annotPM to an AnnotatedDataFrame, it can be used in the featureData

slot of eSet-like objects.
R> annotPM <- as(annotPM, "AnnotatedDataFrame")

We will use the ACME package to calculate enrichment, using algorithms that are

insensitive to normalization strategies and array noise. To work with this package, we

need to create, first, an ACMESet object, which contains chromosome, start and end

positions in the featureData slot.
R> library(ACME)

R> acme <- new("ACMESet", exprs = ratioPM, featureData = annotPM)

The do.aGFF.calc function processes the ACMESet object, using a window size and

threshold to identify the positive probes in the object.
R> calc <- do.aGFF.calc(acme, window = 1000, thresh = 0.95)

The calc object is then used to find enriched regions with the findRegions function,

as shown below.
R> regs <- findRegions(calc)

R> head(regs)

Length TF StartInd EndInd Sample Chromosome Start

1.chr1.1 2179 FALSE 1 2179 1 chr1 56753

1.chr1.2 8 TRUE 2180 2187 1 chr1 7943079

1.chr1.3 18 FALSE 2188 2205 1 chr1 7943979

1.chr1.4 8 TRUE 2206 2213 1 chr1 8009343

1.chr1.5 251 FALSE 2214 2464 1 chr1 8010143

1.chr1.6 6 TRUE 2465 2470 1 chr1 9893303

End Median Mean

1.chr1.1 7925574 5.164068e-01 5.290025e-01
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1.chr1.2 7943879 1.451904e-05 3.231746e-05

1.chr1.3 8009243 4.002685e-01 3.273235e-01

1.chr1.4 8010043 5.670709e-08 3.615056e-05

1.chr1.5 9893203 5.438609e-01 5.414843e-01

1.chr1.6 9893803 2.471619e-05 4.113231e-05
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